
Journal of Network and Computer Applications 141 (2019) 73–85

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Improve MPTCP with SDN: From the perspective of resource pooling

Yanbing Liu, Xiaowei Qin ∗, Ting Zhu, Xiaohui Chen, Guo Wei
CAS Key Laboratory of Wireless-Optical Communications, University of Science and Technology of China, Hefei 230027, China

A R T I C L E I N F O

Keywords:
Multipath TCP
Software defined network
Resource pooling

A B S T R A C T

Multipath TCP (MPTCP) is proposed by IETF to support concurrent multipath transmission between multihomed
hosts. Resource pooling principle, which treats network as a single pooled resource, is applied in the design of
MPTCP schemes, and provides guidelines for MPTCP’s control to achieve resource utilization and fair resource
allocation. However, randomized routing solution and load balancing without global network information in
MPTCP have become obstacles to achieve these objectives, which is validated through our measurements. To
address above problems, we propose S-MPTCP, which realizes coupling control to MPTCP connections in net-
work based on SDN technology providing global network information. Leveraging collected topology informa-
tion, a key parameter, expected throughput, is calculated for each subflow ensuring the efficiency and fairness
in resource exploration and allocation, and according to it, routing and load balancing modules are improved.
Under S-MPTCP’s control, subflow’s throughput will stabilize around its expected throughput, and meanwhile
congestion can be alleviated effectively. Experimental results show that S-MPTCP achieves significant enhance-
ment of bandwidth utilization and fair resource allocation, and the time needed for load balancing is shortened
considerably.

1. Introduction

Nowadays, network develops on a trend toward multipath and
most smart terminals have been equipped with multiple network inter-
faces. Regular Transmission Control Protocol (TCP), which is designed
to be a single-path protocol in essence, cannot provide management
for multipath transmission. On mobile devices, when Wi-Fi/4G han-
dover happens, existing TCP connections must be torn down before
new connections are established and this service interruption will tar-
nish user experience; Although there are often multiple available paths
between two hosts in modern data centers, regular TCP protocol can
only choose one link randomly and a great deal of network resources are
wasted.

To fully utilize network resource between multihomed hosts,
Multipath TCP (MPTCP) (Ford et al., 2013) is proposed by the Internet
Engineering Task Force (IETF), which allows a single connection
to transmit packets on multiple available paths simultaneously.
MPTCP has been applied to kinds of use cases: Cooperation of Wi-Fi
and 4G improves transmission performance on mobile phones with
MPTCP (Paasch et al., 2012); In data centers, multiple paths bandwidth
between two servers can be aggregated efficiently (Raiciu et al., 2011a).

∗ Corresponding author.
E-mail addresses: viper@mail.ustc.edu.cn (Y. Liu), qinxw@ustc.edu.cn (X. Qin), zhuting@mail.ustc.edu.cn (T. Zhu), cxh@ustc.edu.cn (X. Chen), wei@ustc.edu.

cn (G. Wei).

Due to the multipath characteristic of MPTCP, a novel architectural
principle, resource pooling principle (Wischik et al., 2008), is applied in
the design of MPTCP schemes. In the concept of resource pooling princi-
ple, network is treated as a single pooled resource, and it should be allo-
cated to every connection in an efficient and fair manner, to ensure reli-
able and high-speed transmission on all connections. Through a series
of specifically designed modules including path management and con-
gestion control, resource pooling is achieved in theory.

However, MPTCP practical control effect is barely satisfactory
according to our experiments results introduced in Section 2. The
defects on control mechanism design impede stable, responsive and fair
control. The path selection scheme of MPTCP is usually combined with
randomized load balancing technologies such as Equal-cost multi-path
Routing (ECMP) (Hopps, 2000). A limitation of this random path selec-
tion is that avoidable bottlenecks may be created and mass network
resource is idle, and meanwhile the throughput gap between connec-
tions can be tremendous. There are also flaws in MPTCP’s congestion
control module. In the Slow Start phase, the initial value of ssthresh
is set to infinity in MPTCP stack according to RFC5681 (Allman et al.,
2009), which should be set to a more reasonable value. Loss-based algo-
rithms are adopted by MPTCP as the default congestion control solu-

https://doi.org/10.1016/j.jnca.2019.05.015
Received 24 July 2018; Received in revised form 19 March 2019; Accepted 26 May 2019
Available online 30 May 2019
1084-8045/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2019.05.015
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2019.05.015&domain=pdf
mailto:viper@mail.ustc.edu.cn
mailto:qinxw@ustc.edu.cn
mailto:zhuting@mail.ustc.edu.cn
mailto:cxh@ustc.edu.cn
mailto:wei@ustc.edu.cn
mailto:wei@ustc.edu.cn
https://doi.org/10.1016/j.jnca.2019.05.015

Y. Liu et al. Journal of Network and Computer Applications 141 (2019) 73–85

tion, which means that load balancing depends on the event of packet
loss. This coarse-grained and reactive load balancing method also hurts
the performance of MPTCP, and there is often a significant difference
between actual load balance result and ideal result. Although the net-
work bandwidth is usually fully utilized, the resource allocation cannot
be guaranteed to be performed fairly, and the time required for load
balancing is unfriendly for small and medium-size flows. Therefore, it’s
essential to refine control mechanism of MPTCP to address these prob-
lems and achieve desirable resource pooling control.

Software Defined Network (SDN), which is considered as a com-
pelling technology in the future network, is a potential solution for
the proceeding problems of MPTCP. One of the major advantages
of SDN technology is that the centralized controller has visibility
of the complete network, the current traffic characteristics and the
load on individual network elements. It is thus in a prime position
to explore, allocate and manage network resource for each connec-
tion, which can play an important role in achieving the resource
pooling.

In this paper, we propose SDN-based MPTCP (S-MPTCP), which pro-
vides a holistic solution to correct above-mentioned defects of MPTCP
and finally achieve the control effect of resource pooling based on the
cooperation of SDN controller and the MPTCP protocol stack. The sys-
tem design can be divided into three parts: The first phase is to explore
available bandwidth resource in network according to network statis-
tics collected by SDN controller, and output optimal subflows routes
set for newly-established MPTCP connection. Next step is the allocation
of resource explored in the first stage, and a key parameter, expected
throughput, is calculated and sent to corresponding host for all related
subflows in the connection set. The first two steps are performed in the
SDN controller, and the final part is to realize efficient and fair rate con-
trol in the MPTCP stack at the side of host leveraging the information
transmitted from the SDN controller. According to expected throughput
parsed from the MPTCP option, the comparison result of subflow’s cur-
rent throughput and its expected throughput will be a significant indi-
cator, which provides guidance the congestion window control in both
slow start phase and congestion avoidance phase. Our control modules
in MPTCP stack look for the control effect that, subflow’s transmission
rate will stabilize around expected throughput, and congestion will be
prevented in its incipient stage. Under our control mechanism, network
bandwidth resource in the resource pool is fully explored and allocated
to connections fairly in a short time, and meanwhile congestion at the
bottleneck link is restrained efficiently.

The main contributions of this work are as follows:

• We analyze the existing issues in MPTCP control mechanism based
on experiments result. Lack of global network information leads
to several significant design defects, including randomized subflow
routes selection and coarse-grained, reactive load balancing, and
practical control effect of current MPTCP stack is far from resource
pooling demands.

• To address these problems, we propose S-MPTCP, a system based
on the cooperation of SDN and MPTCP technologies, which aims
to realize efficient resource exploration and fair resource allocation
for connections in network. In the control layer, SDN controller will
be responsible for resource exploration and allocation in network,
which includes the routing assignments and expected throughput
calculation for subflows; In the infrastructure layer, MPTCP stack
will process the information from SDN controller, and perform path
management and rate control accordingly. Several related algo-
rithms are designed to accomplish above functions.

• The detailed architecture of S-MPTCP is designed and we imple-
ment it based on MPTCP Linux kernel, Mininet and Floodlight con-
troller, and experiments are performed to evaluate the performance
of our system. Experiment results demonstrate that S-MPTCP can
maximize total system bandwidth and prevent avoidable flow col-
lision through subflow route assignment in SDN controller. Mean-

while fairness and responsiveness are improved significantly in the
process of resource allocation compared with regular MPTCP.

The remainder of this paper is structured as follows. Section 2 intro-
duces the motivation of our work, including the analyze of issues in
MPTCP and introduction of related work. In Section 3, we present the
design of S-MPTCP and algorithms. Section 4 focuses on the architec-
ture of S-MPTCP system. In Section 5, the performance of S-MPTCP is
evaluated. Section 6 concludes the paper and discusses the issues about
cooperation of MPTCP and SDN in the future investigation.

2. Motivation

In this section, we will first introduce resource pooling principle and
methods in MPTCP to achieve resource pooling control. Then experi-
ments are performed to examine whether MPTCP approaches the ideal
control effect of resource pooling. In the end of this section, we intro-
duce and analyze several existing researches which use SDN to improve
MPTCP’s performance.

2.1. Background

The most important difference between MPTCP and traditional
single-path TCP is that the transmission of a single connection can
be performed on multiple paths simultaneously. In RFC6824 (Ford et
al., 2013), general MPTCP operations are defined, including connec-
tion and subflow initiation, data sequence mapping, address informa-
tion exchange, etc. These operations provide architecture basis for mul-
tipath transmission.

Apart from these basic structural operations, there are some other
significant issues on MPTCP flow control. The schemes of path selection,
congestion control adopted by MPTCP stack decide the performance
of transmission. In (Wischik et al., 2008), resource pooling principle is
proposed for multipath-capable end systems. The resource in network is
treated as a whole called resource pool. Resource in the pool should be
well utilized and allocated to connections in a fair manner illustrated in
Fig. 1 through routing and load balancing, and ultimately the efficiency
and fairness of network are ensured.

In the design of MPTCP, congestion control scheme is the cen-
tralized embodiment of resource pooling principle. Based on resource
pooling principle, Raiciu et al. (2011b) proposed three major design
goals of MPTCP congestion control mechanism: improve throughput,

Fig. 1. Fair resource allocation. The entire 36 Mbps bandwidth is allocated for
MPTCP connections equally. Arrows in different colors represent data transfer
directions of different MPTCP connections. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this
article.)

74

Y. Liu et al. Journal of Network and Computer Applications 141 (2019) 73–85

do no harm and balance congestion. In Goal 1, MPTCP is expected to
achieve higher resource utilization than single path TCP (SPTCP). Goals
2 ensures fairness of the resource pool, and resource should be shared
by connections fairly. Goal 3 also captures the concept of resource pool-
ing: If each multipath flow sends more data through its least congested
path, the traffic in the network will move away from congested areas.
To summarize, the congestion control of MPTCP is performed under
the guidance of resource pooling principle to achieve desirable balance
of efficiency and fairness through coupled cwnd control using network
statistics from local host. Several coupled congestion control algorithms
including LIA (Wischik et al., 2011), OLIA (Khalili et al., 2013), BALIA
(Peng et al., 2016) and wVegas (Cao et al., 2012) have been proposed
and implemented for MPTCP. LIA, OLIA and BALIA are loss-based con-
gestion control algorithms, while wVegas is delay-based which is origi-
nated from TCP Vegas (Brakmo and Peterson, 1995).

The current routing technology adopted by MPTCP is ECMP which
uses random hashing to distribute subflows. This randomized method
may lead to two kinds of avoidable flow collisions: collisions between
subflows belonging to the same connection and collisions between sub-
flows belonging to different connections. Fig. 2 illustrates these two
kinds of collisions respectively. Such collisions will result in the insuf-
ficient utilization of network resource and increase the probability of
congestion.

Fig. 2. Two kinds of flow collisions due to randomized path selection. Arrows
in different colors represent data transfer directions of different MPTCP con-
nections. Red lines represent links where collisions happen on, and dotted lines
represent ideal paths which can avoid collisions. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version
of this article.)

Table 1
Connection measurement result.

Algorithm Total Throughput/Mbps SD/Mbps Convergence Time/s

BALIA 33.962 3.511 13.8
OLIA 33.950 3.350 11.8
LIA 33.967 2.847 11.0
wVegas 33.123 0.992 6.2
Ideal Value 36 0 0

2.2. Evaluation of MPTCP performance

Through practical experiments, we investigate the performance of
MPTCP and check its efficiency, fairness and responsiveness in networks
which contain multiple connections.

First, we exclude the influence of routing and only examine the fair-
ness and responsiveness achieved by MPTCP congestion control. The
topology and network parameter is shown in Fig. 1. Three MPTCP con-
nections 1–3 with two subflows share the entire 36 Mbps bandwidth
resource. All other links’ bandwidths are set to 10 Mbps and all links’
delays are 5 ms. We use Mininet to create the topology and 50s long
flows are generated for each connection using Iperf with a 5s interval
between connection establishments. Total throughput, standard devi-
ation (SD) between connections’ throughputs and convergence time
are calculated to evaluate efficiency, fairness and responsiveness. Total
throughput and standard deviation are calculated for statistics after
load balancing has ended and throughputs of all connections have sta-
bilized, and the convergence time is defined as the consuming time
of load balancing before all connections’ throughputs stabilize. Experi-
ment result is shown in Table 1.

From these experiment results, there exists an obvious disparity
between practical effect of MPTCP loss-based congestion control and
ideal control effect in Fig. 1. Although the bandwidth utilization is
high, the fairness and responsiveness are not guaranteed. Standard devi-
ation statistics suggest that there are obvious throughput gaps between
connections. The most common behavior with all three algorithms is
shown in Fig. 3, where we can observe that throughput of connection
3 approaches the sum of throughputs of connection 1 and connection
2. Therefore, fairness in resource allocation is not fully achieved by
these algorithms and a considerable portion of expected bandwidth
of some connections is occupied by other connections due to defects
in MPTCP congestion control. Another significant issue is responsive-
ness. Results show that it will take more than 10 s to complete load
balancing before throughputs of connections converge, which means
the efficiency and fairness provided by MPTCP control will be very
limited for short and medium flows. Therefore, MPTCP loss-based
congestion control algorithms perform poorly on both fairness and
responsiveness.

Delay-based congestion control algorithm turns in a better perfor-
mance in above experiments compared with loss-based algorithms,

Fig. 3. Throughput trajectories of competing connections with BALIA.

75

Y. Liu et al. Journal of Network and Computer Applications 141 (2019) 73–85

Fig. 4. Throughputs of connections in the routing solution experiment.

but is also not so satisfactory. The fairness of resource allocation is
improved, but these is still an about 2 Mbps throughput gap between
connections. Similarly, the time required for load balancing is not
friendly to short and medium flows.

Next, the bandwidth utilization under ECMP routing solution of
MPTCP is investigated on the topology shown in Fig. 2(b). All links
are set to with 10 Mbps bandwidth and 5 ms delay. Connection 1 and
Connection 2 share the entire 40 Mbps bandwidth resource in the net-
work. Experiment is repeated for 10 times, and results are shown in
Fig. 4. From Fig. 4, we can observe that the total throughputs of connec-
tions can be divided into three levels: 40 Mbps, 30 Mbps and 20 Mbps.
According to topology information, the total throughput will be lim-
ited to 30 Mbps when a collision happens on one path and be limited to
20 Mbps when collisions happen on both paths, which is consistent with
the experimental result. This experiment makes clear that randomized
routing selection adopted by MPTCP cannot fully explore and utilize
the resource in the network, which results in performance degradation
of connections and waste of network resource.

Our experiments indicate that MPTCP performs poorly both on
resource exploration and resource allocation due to a series of flaws
in congestion control and routing modules. It’s essential to correct
these defects and perfect control mechanism for further performance
improvement of MPTCP.

2.3. Related works

As the key technology in next generation network, SDN increas-
ingly attracts attention in scientific and industrial communities. Several
researches have been proposed to evaluate and optimize TCP with SDN.
In (Lai et al., 2019), two analytical models are developed for evaluat-
ing the performance of TCP and UDP flows over SDN. The simulation
results show that TCP significantly outperforms UDP in SDN networks.
Congestion control model of TCP is improved in (Bao et al., 2018;
Abdelmoniem et al., 2017; Singh et al., 2019). A centralized conges-
tion avoidance mechanism using SDN technology is proposed in (Bao et
al., 2018), which can solve bottleneck change and burst traffic problems
while ensuring fairness. In data centers networks, a SDN-based conges-
tion control framework is designed in (Abdelmoniem et al., 2017) to
reduce the completion time of short-lived incast flows. In wireless net-
works (Singh et al., 2019), uses SDN controller to detect movement and
hide mobility induced packet losses, which can avoid unwanted reduc-
tion in sending rate.

Various researchers have proposed improvement schemes for sev-
eral modules in MPTCP using SDN technology, although there is still no
related work to improve congestion control module of MPTCP which
is vital in the control mechanism of MPTCP till now. An important

scheme in MPTCP is path management which is responsible for shar-
ing address information and management of subflows. Path heterogene-
ity between subflows will degrade MPTCP’s performance significantly
(Yedugundla et al., 2016; Cordero, 2016; Ramaboli et al., 2012). In
(Nam et al., 2016), subflows’ path capacities are measured and the gap
between capacities is calculated. Poor subflows which provide a low
capacity will be removed form the list of available subflows to avoid
the increase of reordering queue length in receive buffer. In (Kukreja et
al., 2016), researchers implemented an SDN-based automated testbed
to inspect the influence of delay and delay differences to MPTCP per-
formance. Both high delay and high delay differences lead to severe per-
formance degradation according to their measurement, and this result
can become a reference of path management module design. Besides, in
(Chattopadhyay et al., 2018), researchers propose a SDN aided method
to predict the aggregated throughput of a MPTCP flow based on path
characteristics, and find out the optimal set of subflows.

Routing for subflows is another research aspect in the spotlight. In
(Sandri et al., 2015), a shortest path is selected for the first subflow of
connection via Dijkstra algorithm and disjointed paths are selected for
subsequent subflows of the same connection, and this idea is applied to
satellite network and data center network in (Du et al., 2016) and (Zan-
nettou et al., 2016) respectively. In (Hussein et al., 2017), a new rout-
ing scheme is proposed to achieve optimal bandwidth utilization for a
MPTCP connection, where modules in SDN compute routings and keep
track of available bandwidth. However, all above solutions only take
the currently processed connection into consideration and completely
ignores the other connections in network, so they can only mitigate col-
lisions between subflows in the same connection and are powerless to
collisions between different connections’ subflows.

In (Jiang et al., 2018), a novel SDN-based MPTCP routing solution
with load awareness is proposed for satellite network. It is capable of
bottleneck link detection, and paths are selected for subflows according
to the calculation result of available bandwidth. However, the com-
puting formula for links’ available bandwidth is unreasonable to some
extent: The available bandwidth of a path is set to the maximum value
of left bandwidth and average bandwidth. The average bandwidth only
makes sense when the bandwidth of the bottleneck link is allocated
equally for each subflow passing it, however, the load balancing of
MPTCP aims to perform fair bandwidth allocation for each connection
rather than for subflow. The calculation of available bandwidth ignores
the bandwidth allocated for other subflows of competing connections,
so it cannot reflect the fairness described in the resource pooling prin-
ciple in essence.

A significant issue must be addressed before SDN-based MPTCP is
used in large-scale data center networks. An expensive and power-
hungry resource, Ternary Content Addressable Memory (TCAM), is
required to store forwarding rules in switches, and more data flows gen-
erated by SDN-based MPTCP will increase the consumption of TCAM.
To reduce the SDN-based MPTCP’s demand for TCAM resource, Seg-
ment Routing (SR) technique are used in (Pang et al., 2017) and (Barak-
abitze et al., 2018) to decrease the number of forwarding rules in video
service and data center respectively. Experiment results show that the
flow table size diminishes remarkably when SR is enabled in networks.
However, network overhead may be caused by SR and future research
is essential to avoid this limitation.

Above-mentioned researches, which aim to the improve MPTCPs
resource utilization with SDN, involve path management, route selec-
tion modules and forwarding flow table. However, other targets are
neglected which should get the same attention including fairness and
responsiveness in networks.

3. Design of S-MPTCP

As a holistic solution to improve MPTCP’s efficiency, fairness and
responsiveness comprehensively based on SDN, the control mechanism
of S-MPTCP is composed of three parts: resource exploration, resource

76

Y. Liu et al. Journal of Network and Computer Applications 141 (2019) 73–85

Table 2
Connection information.

Connection ID Subflow ID Link Expected Throughput

1 1 1, 2, 3 et11
1 2 4, 5, 6 et12
2 1 7, 5, 8 et21
2 2 9, 10, 11 et22
3 1 12, 10, 13 et31
3 2 14, 15, 16 et32

allocation and flow control. In this section, we present the design ideas
of S-MPTCP and these three parts in detail.

3.1. Resource exploration

All the other work about resource pooling is on the foundation
of resource exploration. In this step, an optimal subflows routes set
for newly-established connection will be calculated and outputted to
realize the fully resource exploration and maximize the resource uti-
lization. We consider the following circumstance: In a SDN network,
there exist several MPTCP connections and at some point, a server
host plans to establish a new MPTCP connection to its remote client.
The total utilized resource pool can be defined as the total band-
width of existing connections and the new connection, and the main
target of S-MPTCP in this stage is to maximize the utilized resource
pool.

Based on above analysis, we divide the path selection of subflow into
two stages: In the first stage, path selection will be performed to explore
residual network resource which has excluded the resource shared by
existing connections, and in the second stage, necessary extra paths
will be allocated to the new connection’s subflows for the reason of
fairness.

Therefore, the task of the first stage is to select the optimal subflow
routes for the new connection to maximize the bandwidth under the
limitation of residual network capacity, which is the result of removing
the expected occupied portion of existing connections.

In our mechanism, an important concept is the expected through-
put of a subflow. It specifies how much bandwidth the subflow should
occupy and this value is calculated in Section 3.2 according to the
resource pooling principle. Suppose there is a set of connections C
which comprises a set of subflows S in the network. etij is the expected
throughput of a subflow Sij which is the jth subflow of connection Ci.
Each subflow Sij is associated to a path Pij which consists of a set of links
L. Lk ∈ Pij denotes that this subflow passes through link Lk and bk is
the bandwidth of link Lk. An information table can summarize these
connections and path information, as shown in Table 2.

With the help of this table, we can get a residual graph which con-
tains the information about available paths and residual capacities of
links. The residual bandwidth rbk of link Lk is calculated to be the por-
tion left over after subtract the value of expected throughputs of sub-
flows which pass through link Lk from the original bandwidth bk, as
shown in the following formula:

rbk = bk −
∑

Lk∈Pij

etij (1)

The rest task can be regarded as a maximum flow problem, which
can be written into an optimization model:

max

(∑
(v,t)∈A

fvt

)

s.t. 0 ≤ fuv ≤ rbuv

(2)

A is the arc set and u, v, s, t ∈ A where s, t are the source and
the sink respectively. This problem has been researched for several

Table 3
Maximum flow algorithms and running time.

Algorithm Running Time

Ford-Fulkerson algorithm O(mU)
Edmonds-Karp algorithm O(nm2)
Dinic’s algorithm O(n2m)
Dynamic tree blocking flow algorithm O(nmlogn)
Push-relabel method On2m

Table 4
Dinic’s algorithm’s running time in a K-ray FatTree
topology.

K Vertices Arcs Running Time/ms

4 36 48 0.0886
8 208 384 0.3721
16 1344 3072 8.2371
32 9472 24,576 427.8041

decades, and several efficient maximum flow algorithms have been pro-
posed, including Ford-Fulkerson algorithm (Ford and Fulkerson, 1956),
Edmonds-Karp algorithm (Edmonds and Karp, 1972), Dinic’s algorithm
(Dinic, 1970), dynamic tree blocking flow algorithm (Sleator and Tar-
jan, 1983, 1985), push-relabel method (Goldberg and Tarjan, 1988)
(Some specific algorithms for the problem with unit capacities are not
within the scope of this paper). Running time is the most significant
indicator of maximum flow algorithms, and that of above algorithms
are listed in Table 3, where n and m are the number of vertices and
arcs in the residual network, and U denotes the largest link capacity.
A crucial defect of Ford-Fulkerson algorithm and Edmonds-Karp algo-
rithm is that they may not converge when capacities are not integral,
so they are not ideal options in actual networks. According to (Gold-
berg and Tarjan, 2014), although dynamic trees can achieve the best
worst-case bounds, they are not adopted in practical usage because
most practical instances are relatively easy. Besides, the constant factors
in dynamic tree implementations are relatively large. Finally, we choose
Dinics algorithm to address maximum flow problem in this paper.
According to the execution results of Dinic’s algorithm, optimal sub-
flow routing and their available bandwidth can be obtained with further
processing.

So is the running time of Dinics algorithm acceptable in networks?
We measure the running time of Dinics algorithm with our C++ imple-
mentation. Measurement is performed in FatTree topology, which is
probably the most popular structured datacenter topology, and band-
widths of links are set to be a random value between 0 Mbps and
10 Mbps. Table 4 shows the number of vertices and arcs and the
average running time of Dinics algorithm in a K-ray FatTree topol-
ogy. According to measurement results in Table 4, when there are
hundreds of vertices and arcs in the network, the running time of
Dinics algorithm is at a negligible level. When the number swells into
thousands, the running time can be tolerated in most cases. So its
reasonable to argue that for a medium-sized network, it wont take
much of time for S-MPTCP to perform Dinics algorithm and complete
initialization.

After the operations of the first stage, several paths may have been
allocated for subflows of the newly-established connection. However,
apart from resource exploration, fairness between new connection and
existing connections also must be taken into account. Because in the
first stage, resource occupied by existing connections is out of the range
of new connection’s resource exploration, the total bandwidth of allo-
cated paths for new connection might be too low or even zero when
existing connections use up the bandwidth of bottleneck links on avail-
able paths. In this case, the bandwidth compensation for the new con-
nection in the following resource allocation procedure introduced in

77

Y. Liu et al. Journal of Network and Computer Applications 141 (2019) 73–85

Section 3.2 will be very limited and fairness between connections can-
not be ensured. Therefore, we propose a solution to find extra paths
for the new connection in the second stage. For each available path Pr,
we will calculate the difference between the total amount of expected
throughput above average level of connections which pass through links
belonging to Pr and the average expected throughput:

osetr =
∑

{i∣Pi
⋂

Pr≠ ∅}

∑
j

etij −
numcr
numc

∑
i

∑
j

etij (3)

numcr is the number of connections which pass through links belong-
ing to Pr. A larger osetr means that more bandwidth resource can be
vacated from existing connections related to this path and allocated to
newly-established connection. Therefore, we calculate the osetr param-
eter for each available path in the original graph, and sort all paths
based on it. Besides, sufficient path capacity is essential to decrease the
throughput gap in the resource allocation stage. When the total band-
width of selected paths reaches

∑
i
∑

jetij∕numc, it will be enough band-
width to achieve fair bandwidth allocation in the following step, and
path selection ends at this point. The complete resource pool finding
algorithm is shown in Algorithm 1.

Algorithm 1 Resource pooling exploration algorithm.
1: Input: bk, rbk
2: Output: subflows routes
3: Init: PS = ∅
4: Use Dinic’s algorithm and a subflow path set PS is obtained
5: While

∑
Pr∈PSminLk∈Pr (bk) <

∑
i
∑

jetij∕numc do
6: maxoset = −∞, maxr = 0
7: for each available subflow path Pn do
8: osetn =

∑
{i∣Pi

⋂
Pn≠ ∅}

∑
jetij −

numcn
numc

∑
i
∑

jetij
9: if osetn > maxoset then
10: maxoset = osetn, maxr = n
11: end if
12: end for
13: PS = {PS,Pmaxn}
14: end while
15: Set routes for subflows according to PS

3.2. Resource allocation

After the above operations, subflow paths have been identified
which means the utilized resource pool shared by all connections has
also been fixed. The next question is which manner should we adopt to
allocate resource to these connections to ensure efficiency and fairness
between connections?

max

(∑
i

log

(∑
j

etij

))

s.t. A · et ≤ b, et ≥ 0

(4)

The straightforward approach is to set and solve an optimization
problem to balance efficiency and fairness. In (Kelly et al., 1998) and
(Han et al., 2006), the above optimization problem drawn from Nash
arbitration scheme was proposed, and it has been proved that through-
puts of connections are desirable optimal, fair operating points for
the individual connections, when they solve the optimization problem.
However, a critical problem is that this optimization problem belongs to
mixed integer non-linear programming which has been shown to be NP
hard (Bonami et al., 2012). Thus, we propose a heuristic algorithm to
perform resource allocation leading to a tradeoff efficiency and fairness
in a short running time.

If two connections don’t pass through a same link, these two
connections are independent to each other in our concept. If there
is a connection set composed of several connections, and a con-
nection in this set is not independent to at least one connection

Fig. 5. The sketch of resource reallocation with water flow behavior.

in this set, and meanwhile it’s independent to other connections
which are not in this set, the resource of these collection set can
be regarded to be independent to other connections. When new
connection’s subflow routings have been identified through the first
stage processing, the connection set it belongs to is also been fixed,
and expected throughputs of all connections in this set are our
algorithm’s processing objects to achieve efficient and fair resource
allocation.

A major goal of resource allocation is to achieve fairness, which
means the bandwidth of connections in the same set should be as close
as possible. This process can be naturally associated with the behaviors
of water flows shown in Fig. 5: Connections can be seen as container
and when two connections share common links, the two containers are
interconnected. The water height of containers represents the expected
throughput and the movement of water will drive the resource alloca-
tion. When water heights all converge to a stable state, we can consider
that the resource has been allocated to each connection in a fair man-
ner.

When a new connection is established in the SDN network, it can be
regarded as a new container. If new connection’s expected throughput
is lower than the “average level”, water flow will move from other con-
nections in the same set until the new connection’s expected throughput
reaches the maximum value of average expected throughput and the
upper limit of path bandwidth. We decompose this process into a series
of independent operations on single connection, rather than perform
adjustments to all related connections simultaneously. The algorithm
details are as follows.

The preparatory work falls into two parts: The first task is
to construct two graphs, the residual graph for judgement and
the residual graph for calculation. The judgement residual graph
records the results that the expected throughputs of existing con-
nections have been subtracted, while the residual graph for calcula-
tion is the result that only processed connections expected through-
puts in the current process have been subtracted. When expected
throughput of a connection changes, both graphs will be updated
correspondingly.

Through the information stored in judgement residual graph and
path routing of connections, connections which belong to the same set
with the new connection can be found out and marked. The relationship
between connections in the set falls into two categories: direct joint and
indirect joint, while relationship between subflows and connections in
the set falls into three categories: direct joint, indirect joint and disjoint.
All these relationships are recorded and up to this point, the preparation
work is finished.

Let’s first go into the process of the newly-established connection.
A parameter we are interested in is the maximum throughput that the
new connection can approach under the bandwidth limitation of judge-

78

Y. Liu et al. Journal of Network and Computer Applications 141 (2019) 73–85

ment residual graph. In the previous stage, all connections’ routings are
identified. According to judgement residual graph and the subflow path
routing, the maximum achieved throughput of the connection maxtn
and throughputs of subflows maxtnj at this point can be estimated using
Algorithm 2, and we set these values as the initial values of expected
throughput.

Algorithm 2 Maximum throughput estimation algorithm.
1: Input: link bandwidth bk, residual bandwidth nbk, number of

subflows on link k numsk
2: Output: maxtn, maxtnj
3: Init: flag = 0
4: for each subflow Sj do
5: inittj = minLk∈Pj

bk
6: end for
7: for each link Lk do
8: nbk = min

(
rbk −

∑
Lk∈Pj

init_tj,0
)

9: end for
10: while flag = = 1 do
11: flag = 0
12: boj =

∑
k (nbk∕numsk)

13: minbo = 0, minj = 0
14: for each subflow Sj do
15: if boj < minbo then
16: minbo = boj, minj = j
17: end if
18: end for
19: ot = tminj

20: tminj = max
(

tminj + minLk∈Pminj (nbk) ,0
)

21: for Lk ∈ Pminj do
22: nbk+ = ot − tminj
23: if nbk < 0 then
24: flag = 1
25: end if
26: end for
27: end while
28: maxtn = ∑

jtj, maxtnj = tj

Algorithm 3 The process order of connections.
1: Find the next connection to process:
2: Input: proqueue
3: Output: next_c
4: Init: mind = +∞
5: for each connection Ci do
6: if proqueue[i] > 0 and proqueue[i] < mind then
7: mind = proqueue[i]
8: next_c = i
9: end if
10: end for
11:
12: Update the order after connection Cn is processed:
13: Input: jointd, proqueue
14: Output: proqueue
15: Init: mind = +∞
16: for each connection Ci do
17: if jointdni = = 1 and proqueue[i] = = − 1 then
18: proqueue[i] = proqueue[n] + 1
19: end if
20: end for
21: proqueue[n] = 0

The initial expected throughput can be regarded as the current water
height in the new container, and it will be compared with the average
throughput to decide whether to balance throughput of other connec-

tions and the new connection. The average throughput is:

avgt =
(∑

i

∑
j

etij + maxtn

)
∕ (numc + 1) (5)

where numc + 1 is the current number of connections in this set.
If maxtn < 0.9 · avgt, the allocation is considered to be unfair for the
new connection. maxtn and maxtnj are recalculated according to the
calculation residual graph, and the increase of expected throughput is:

Δn = min (avgt,maxtn) −
∑

j
etnj (6)

If this is an actual water movement problem, we have finished
the process of the new container. However, because MPTCP connec-
tion consists of several subflows, the increase of throughput must be
allocated to subflows. Based on the previous preparation, the number
numjointnj and total throughput etjointnj of connections which are joint
with a certain subflow can be obtained. totaletnj = etjointnj − avgt ·
numjointnj represents the total throughput of connections which are
joint with the subflow that is above average. The greater the value, the
more resource should be extracted from the connection subset and the
subflow can get more throughput compensation. On the other hand, the
compensation is limited by the link bandwidth on the subflow. There-
fore, Δn is prorated recurrently according to totaletnj under the limita-
tion of link bandwidth.

After the first connection process, both residual graphs are updated
and next, the expected throughputs of connections which are directly
joint to the newly-established connection need to be adjusted. Natu-
rally, expected throughputs of connections which are joint with pro-
cessed connections also need adjustment. These is a hierarchal rela-
tionship between connections in the set according to the distance to
the new connection. We choose to adopt breadth first search to make
amendments, and the process method for connections is same with the
process of the new connection. When expected throughput adjustments
end, the whole network enters steady state phase. The pseudo code is
shown in Algorithm 3 and Algorithm 4.

3.3. Flow control

After above process complete, subflows have been established on
the routing identified in the first step, and expected throughputs are
set according to the above algorithms. In the final step, flow control on
the side of host will be improved leveraging these expected throughput
values.

A significant control method can be used in the Slow-Start phase.
Our previous work has shown that the present Slow Start mecha-
nism of MPTCP may induce serious congestion window (cwnd) over-
shoot leading to severe performance degradation. Due to lack of a
reasonable ssthresh, the exponential growth of cwnd is kept until
packet losses occur and when slow start stage ends, MPTCP sub-
flows may seriously overshoot their cwnd beyond path capacity. Acute
packet reordering problem caused by cwnd overshooting will likely
result in throughput degradation and poor overall utilization, espe-
cially when there is noticeable path heterogeneity between MPTCP
subflows.

With the help of SDN, a threshold can be set based on the expected
throughput calculated before to control the Slow Start scheme to avoid
the cwnd overshooting and the consequent bottleneck overflow. The
basic idea is that when subflow’s throughput approaches its expected
value, this subflow will exit from Slow Start and switch to Conges-
tion Avoidance. Because expected throughput has constrained the trans-
mission under the limitation of link capacity, the phenomenon of
cwnd overshooting will be eliminated. Additionally, efficiency and fair-
ness of network can be well balanced when the subflow exits Slow
Start.

After the subflow enters Congestion Avoidance, cwnd will keep lin-
ear increasing to explore the rest bandwidth. When traditional AIMD

79

Y. Liu et al. Journal of Network and Computer Applications 141 (2019) 73–85

Algorithm 4 Resource allocation algorithm.
1: Input: judgement residual graph, calculation residual graph
2: Output: et
3: Init: proqueue[numc + 1] = 1
4: While next_c do
5: n = next_c
6: Update jointc, jointd, etjoint and numjoint
7: Calculate maxtn and maxtnj according to the judgement residual graph
8: avgt =

(∑
i
∑

jetij + maxtn
)
∕ (numc + 1)

9: if maxtn ≥ 0.9 · avgt then
10: for each subflow Snj do
11: etnj = maxtnj, etn = maxtn
12: proqueue[n] = 0
13: end for
14: else
15: Calculate maxtn and maxtnj according to the calculation residual graph
16: Δn = min (avgt,maxtn) −

∑
jetnj, Δtmp = Δn, it = 0

17: if avgt ≥ maxtn then
18: for each subflow Snj do
19: etnj = maxtnj, etn = maxtn
20: end for
21: else
22: WhileΔtmp > 0.1 · Δn and it < threshold
23: Calculate maxtn and maxtnj according to the calculation residual graph
24: sumet = 0
25: for each subflow Snj do
26: totaletnj = etjointnj − avgt · numjointnj
27: if maxtnj > 0 and totaletnj > 0 then
28: sumet + = totaletnj
29: end if
30: end for
31: for each subflow Snj do
32: if maxtnj > 0 and totaletnj > 0 then
33: Δnj = min

(
Δtmp ·

totaletnj
sumet ,maxtnj

)
34: etnj + = Δnj, etn + = Δnj, Δtmp − = Δnj
35: end if
36: end for
37: it + +
38: end while
39: end if
40: end if
41: Update the judgement residual graph and the calculation residual graph
42: end While

congestion control algorithms of MPTCP (LIA, OLIA, BALIA, etc.) are
adopted, the cwnd increase will last till subflow experiences a packet
loss, and coupled cwnd reduction operation is performed. In other
word, AIMD algorithms need to create losses to find the available band-
width of the subflow which can cause performance penalty.

Now we have a chance to improve MPTCP congestion control mod-
ule and address these mentioned problems. The ideal state of subflow’s
transmission rate in our design is to perform regular linear increase
before it approaches expected throughput, and then maintain this level.
When all subflows in network transfer data at the rate of expected
throughput, the whole network will work in an efficient and fair man-
ner. However, not all connections can always fully utilize their allocated
bandwidth and in this case, part of resource will be wasted. Therefore,
subflow’s cwnd is permitted to increase after it approaches the expected
throughput. At this point, the possibility of congestion increases, so the
exploration of bandwidth should become more cautious and conserva-
tive. In the same time, the buffer queue length will be monitored peri-
odically to anticipate congestion. The part of control mechanisms on
hosts shown in Algorithm 5 are implemented in a plugin which adapts
to current loss-based MPTCP algorithms.

A transmission rate evolution example is illustrated in Fig. 6. At time
A, the subflow is established after handshake and cwnd experiences
exponential growth in this stage. From time B to time C, the trans-
mission rate approaches expected throughput, and subflow moves to
Congestion Avoidance. The growth rate of cwnd is limited with param-
eter rate_factor and 𝛼. At time C, it is observed that a remarkable buffer
queue is built and its length increases quickly, and parameter 𝛽 serves

Fig. 6. The evolution of subflow’s cwnd under S-MPTCP congestion control
mechanism.

80

Y. Liu et al. Journal of Network and Computer Applications 141 (2019) 73–85

Fig. 7. The system architecture of S-MPTCP.

as a threshold. At this point, host will turn on the congestion alert that
congestion is very likely to happen on the path. The alert will instruct
the cwnd adjustment of host: The cwnd will decrease proactively if cur-
rent throughput of subflow is higher than its expected throughput. The
throughput after cwnd adjustment will be slightly lower than the level
of expected throughput to drain buffer queue. Afterwards, the alert will
be lifted and the increase of cwnd will return to regular linear increase.
Through the above control mechanism, the transmission rate can stabi-
lize around expected throughput, and prevention ability of congestion
is ensured in the same time. The selection of parameters 𝛼 and 𝛽 will
be discussed in Section 5.1.

Algorithm 5 Expected throughput based congestion control
algorithm.
1: Init:qj = 0, rate_factor = 1, 𝜇 = 0.9
2: On the end of round for subflow Sj
3: Check throughput tj and current buffer queue length cqj
4: if tj > etj then
5: rate_factor = 𝛼

6: if 𝛽 · cqj ≥ qj then
7: cwndj = 𝜇 · etj · baseRTTj
8: end if
9: else
10: rate_factor = 1
11: end if
12: qj = cqj
13: On each ACK of subflow Sj:
14: if cwndj ≤ ssthreshj and cwndj∕rttj < etj then
15: perform regular slow start algorithm
16: else
17: perform regular congestion avoidance algorithm, and

get the increase of cwnd cwnd_inc
18: cwndj + = cwnd_inc∕rate_factor
19: end if

4. System architecture

The system overview of S-MPTCP is shown in Fig. 7. In SDN con-
troller modules and MPTCP protocol stacks of hosts, several modules
are designed to realize resource exploration and allocation for MPTCP
connections.

4.1. SDN controller

As the basis of our operations, the information of network topology
will be collected and updated by SDN controller. All these information
will be consolidated into a network graph for later use of other modules.
When establishment events of MPTCP connection and subflow happen
in network, MPTCP connection manager will parse MPTCP options from
corresponding handshake packets and update related information. If an
MP_CAPABLE option is parsed, both a new connection entry and a new
subflow entry will be added and information including IP addresses,
ports and token which serves as a unique connection identification are
recorded.

Next, resource exploration and allocation algorithms are performed
according to network graph and existing connection information. As the
output of algorithms, optimal subflow routes set and subflow’s expected
throughput will be calculated for each connection through algorithms
introduced in Section 3.1 and 3.2. According to the subflow route sets,
corresponding route control can be completed by controller indepen-

Table 5
System configuration in all of our experiments.

Configuration Parameter

CPU type Intel Core i5-6500
Number of CPU cores 4
Memory 16 GB
Storage 200 GB
Operating system Ubuntu 14.04 LTS
Kernel version Modified MPTCP v0.91.2
Mininet version Mininet 2.2.2
SDN controller Modified Floodlight v1.2

81

Y. Liu et al. Journal of Network and Computer Applications 141 (2019) 73–85

Table 6
Connection measurement result with different parameter 𝛼 and 𝛽

𝛼 𝛽 Total Throughput/Mbps SD/Mbps Convergence Time/s

1 1 33.926 0.019 3.4
1 2 33.944 0.089 3.1
1 3 33.967 0.092 3.2
3 1 33.936 0.019 2.5
3 2 33.950 0.089 2.0
3 3 33.950 0.089 2.5
5 1 33.926 0.017 2.0
5 2 33.961 0.088 2.0
5 3 33.952 0.088 2.1
10 1 33.923 0.018 2.0
10 2 33.951 0.097 2.0
10 3 33.978 0.098 2.0

Table 7
Connection measurement result with different congestion control schemes.

Algorithm Total Throughput/Mbps SD/Mbps Convergence Time/s

BALIA 33.962 3.511 13.8
OLIA 33.950 3.350 11.8
LIA 33.967 2.847 11.0
wVegas 33.123 0.992 6.2
S-MPTCP 33.950 0.018 2.0
Ideal Value 36 0 0

Fig. 8. Throughput trajectories of competing connections with S-MPTCP.

dently. If there is no route in the set for current subflow, this subflow
will be regarded as backup subflow and its expected throughput will be
set to zero.

Different from subflow route control, the congestion control is per-
formed in MPTCP protocol stack of hosts. Therefore, controller needs
to send the value of expected throughput to corresponding host after
calculation. To inform the host of the subflow expected throughput,
SDN controller will compose and send a TCP packet to host leveraging

the Packet-out message of Openflow. The IP addresses and ports can
be obtained from information stored in MPTCP connection manager.
We design a new MPTCP option called MP_ET which carries the value
of expected throughput. This packet will be sent out to the switch and
finally received by host which the subflow belongs to.

4.2. MPTCP protocol stack

In Section 3.3, we propose a novel congestion control mechanism
based on expected throughput. The main purpose of modules imple-
mented in MPTCP protocol stack of hosts is to achieve congestion win-
dow control introduced in algorithms.

In essence, the Packet-out message is a single TCP packet, so it
doesn’t belong to any connection. Therefore, regular processing in TCP
stack cannot apply to this packet. For this reason, before TCP stack
demultiplexes arriving packets and binds them to connections, we add
an additional MPTCP option parse operation, and after that, the packet
is simply discarded if it contains MP_ET option. When the excepted
throughput extracted from MP_ET option is zero, the corresponding sub-
flow will be set to low priority.

Our mechanism is realized as a plugin which cooperates with exist-
ing congestion control algorithms in kernel. Two important criterions
decide how to set cwnd to a proper level: The first one is the compari-
son between current throughput and expected throughput, and another
is the growth rate of buffer queue length. Both parameters can be col-

Table 8
Connection measurement result with different delays.

Solution Delay/ms Total Throughput/Mbps SD/Mbps Convergence Time/s

S-MPTCP 15 33.950 0.018 2.0
30 33.940 0.048 2.0
100 33.950 0.030 3.0
200 33.907 0.028 5.0
500 33.795 0.039 13.0

regular MPTCP 15 33.962 3.511 13.8
30 33.950 1.970 9.0
100 33.933 3.406 13.0
200 33.981 3.956 13.0
500 34.131 3.271 24.0

Ideal Value 36 0 0

82

Y. Liu et al. Journal of Network and Computer Applications 141 (2019) 73–85

Fig. 9. Throughput trajectories of competing connections of S-MPTCP and reg-
ular MPTCP with different delays.

lected in controller or estimated in MPTCP stack. If we choose to collect
throughput and buffer statistics by controller and then send them to
hosts, it will bring significant cost of computational resource and link
bandwidth resource to maintain statistics update in a timely manner.
In the same time, the packet transmission delay will also hurt the effect
of control schemes. For these reasons, the estimation of throughput and
buffer queue length will be performed in MPTCP protocol stack. Based
on these statistics and the information extracted from MP_ET option,
expected throughput based slow start algorithm and congestion control
algorithm can be implemented and aggregated with existing congestion
control schemes.

5. Evaluation

In this section, we will evaluate the performance of S-MPTCP based
on our system implementation. The SDN controller is implemented

based on Floodlight v1.2. Modules including MPTCP connection man-
ager, subflow routes decision and expected throughput computation are
added and cooperate with existing modules. On the protocol stack on
the hosts, MPTCP v0.91.2 is modified to realize functions introduced
before. Mininet 2.2.2 is used to create out test topologies. The mod-
ification in the MPTCP congestion control scheme is based on BALIA
algorithm in our experiment, which can also be performed on LIA and
OLIA. The default congestion control algorithm of regular MPTCP is
also set to BALIA for a direct comparison. All of our experiments are
performed on the same testbed, and its configuration in all these exper-
iments is shown in Table 5.

The evaluation is divided into two parts: First we will test the
effect of load balancing in S-MPTCP and find the optimal parameter
setting. In the second part, the improvement of resource utilization
due to the routing solution in S-MPTCP will be examined. These two
parts’ results will be compared to the performance of regular MPTCP in
Section 2.2.

5.1. Resource allocation test

First we test the load balancing effect of S-MPTCP and examine
whether it achieves resource allocation with efficiency, fairness and
responsiveness. In Section 2.2, regular MPTCP performs poorly on load
balancing. The same test in Section 2.2 is performed for S-MPTCP with
different settings of parameter 𝛼 and 𝛽 used in Algorithm 5 on the topol-
ogy shown in Fig. 1, and results are shown in Table 6. When 𝛽 increases
from 1, the standard deviation rises dramatically, which means worse
fairness achieved by load balancing with larger 𝛽. The convergence time
is mainly affected by 𝛼, and results show that when 𝛼 is greater than
5, it takes about 2 s for S-MPTCP to complete the whole load balanc-
ing. To sum up, 𝛼 = 5 and 𝛽 = 1 are the optimal parameter setting
according to our test.

Performance of S-MPTCP and regular MPTCP are presented together
in Table 7 for a direct comparison. The total throughputs achieved
by S-MPTCP and regular MPTCP are very close, while other indi-
cators are improved tremendously with S-MPTCP. Standard devia-
tion between connections’ throughputs with S-MPTCP is reduced to
0.018, which approaches the ideal value. It means that resources are
allocated to each connection almost equally. In terms of responsive-
ness, the convergence time due to load balancing is cut to about 2 s,
which includes the time required for slow start stage. In fact, the
load balancing effect after only 1 s reaches the effect with wVegas
which costs 6.2 s. The high level of responsiveness ensures short and
medium flows can enjoy control effect achieved by S-MPTCP. The
throughput behavior of S-MPTCP is shown in Fig. 8, which gives a
visual representation of load balancing with fairness and responsive-
ness.

A significant factor that influences MPTCP’s performance is delay.
The total delay of links on a subflow’s path is varied from 15 ms to
500 ms. Table 8 and Fig. 9 show the performance of S-MPTCP and
regular MPTCP under different transmission delay. With the increase
of delay, the convergence time of S-MPTCP rises and it reaches 13s
when delay is set to 500 ms, while the throughput and standard
deviation are not obviously influenced by delay. Therefore, the rise
of delay only degrades the responsiveness of S-MPTCP when effi-
ciency and fairness are not affected. S-MPTCP outperforms regular
MPTCP significantly according to experiment results, irrespective of
delay.

5.2. Resource exploration test

In Section 2.2, we analyze the insufficient bandwidth utilization
problem due to randomized routing in regular MPTCP. In this part,
we investigate whether S-MPTCP can address the routing problem and
fully utilize available resource. As a comparison, we also test the uti-
lization of regular MPTCP and improved MPTCP in (Sandri et al., 2015)

83

Y. Liu et al. Journal of Network and Computer Applications 141 (2019) 73–85

Table 9
Connection throughput with the first kind of
potential collisions.

Solution Average Throughput/Mbps

Regular MPTCP 13.149
Disjoint MPTCP 18.816
S-MPTCP 18.862
Ideal Value 20

Fig. 10. Connection throughput with the first kind of potential collisions.

which chooses disjoint paths for subflows belonging to the same con-
nection.

First we evaluate the resource utilization of these three solutions
in the topology shown in Fig. 2(a) where collisions between subflows
belonging to the same connection might happen. Measurements are
repeated ten times and results are shown in Table 9 and Fig. 10. When
connection adopts the routing solution of S-MPTCP and disjoint MPTCP,
the bandwidth is fully utilized and collision is avoided. Therefore, both
S-MPTCP and disjoint MPTCP can address this kind of collision prob-
lem effectively, while regular MPTCP will suffer throughput degrada-
tion frequently. When subflows are allocated to joint paths according
to routing scheme of regular MPTCP, throughput is limited to half typ-
ical levels.

The second kind of potential collisions happen between subflows
belonging to different MPTCP connections. Experiment is performed on
the topology in Fig. 2(b) to study performance of these three solutions.
From experiment results shown in Table 10 and Fig. 11, S-MPTCP can
still utilize available bandwidth as much as possible. Unlike the first
case, disjoint routing scheme fails to solve this kind of collisions because
its routing algorithm only consider subflows’ routings belonging to the
same connection. Similarly, regular MPTCP connections cannot achieve
stable and reasonable routing selection and consequently wastes vast
amounts of network resources.

Table 10
Connection throughput with the second kind of
potential collisions.

Solution Average Throughput/Mbps

Regular MPTCP 30.926
Disjoint MPTCP 27.345
S-MPTCP 37.716
Ideal Value 40

Fig. 11. Connection throughput with the second kind of potential collisions.

6. Conclusion and future work

To enhance the efficiency, fairness and responsiveness, we propose
S-MPTCP which improves the resource exploration and resource alloca-
tion of MPTCP with the assist of SDN. Through modules we design in
SDN controller and MPTCP stack, routing and load balancing problems
of MPTCP are addressed effectively. Our experiments demonstrate that
available bandwidth is fully utilized and allocated to each connection
in a fair manner within a short time.

There are still some opening issues related to our systems and some
new technologies:

Packet loss due to link error is an important issue in MPTCP, espe-
cially in lossy wireless networks. According to our observation, when
packet loss rate is low (lower than 1%), S-MPTCP can maintain effec-
tive control and efficiency, fairness and responsiveness can be ensured.
If loss rate rises to a high level, the control effect will be degraded.
Therefore, if S-MPTCP is expected to perform better in lossy wireless
network, specific control mechanism is needed for packet loss problem.

Nowadays, resources of downlink and uplink are in the nature of
asymmetry for many emerging wireless communication technologies,
such as Visible Light Communication (VLC) (Tanaka et al., 2001) and
Millimeter Wave (mmWave). Powerful downlink and poor uplink are
common characteristic in VLC and mmWave networks. In these cases,
it’s essential to consider the resource asymmetry in the calculation pro-
cess of expected throughput to achieve finer-grained resource alloca-
tion.

In S-MPTCP, expected throughputs are adjusted according to our
heuristic algorithm. machine learning, a compelling technology attract-
ing attention in both scientific and industrial communities, is a poten-
tial solution for this adjustment task. Using captured transmission infor-
mation from SDN controller and MPTCP stack, machine learning algo-
rithms is likely to be trained to dig out hidden rules and get potential
knowledge, and finally output an effective and particular solution. We
expect machine learning can provide novel ideas for the cooperation of
MPTCP and SDN.

In future work, we plan to investigate above issues to realize bet-
ter cooperation between MPTCP and SDN, and achieve further perfor-
mance enhancement.

Declarations of interest

None.

Acknowledgment

This work was supported by National Science and Technology Major
Project of China MIIT (Grant No.2017ZX03001011-004), the Funda-
mental Research Funds for the Central Universities.

84

Y. Liu et al. Journal of Network and Computer Applications 141 (2019) 73–85

References

Abdelmoniem, A.M., Bensaou, B., Abu, A.J., 2017. Sicc: sdn-based incast congestion
control for data centers. In: 2017 IEEE International Conference on Communications
(ICC). IEEE, pp. 1–6.

Allman, M., Paxson, V., Blanton, E., 2009. Tcp Congestion Control. Tech. rep.. .
Bao, J., Wang, J., Qi, Q., Liao, J., 2018. Ectcp: an explicit centralized congestion

avoidance for tcp in sdn-based data center. In: 2018 IEEE Symposium on Computers
and Communications (ISCC). IEEE, pp. 00347–00353.

Barakabitze, A.A., Mkwawa, I.-H., Sun, L., Ifeachor, E., 2018. Qualitysdn: improving
video quality using mptcp and segment routing in sdn/nfv. In: 2018 4th IEEE
Conference on Network Softwarization and Workshops (NetSoft). IEEE, pp. 182–186.

Bonami, P., Kilin, M., Linderoth, J., 2012. Algorithms and software for convex mixed
integer nonlinear programs. In: Mixed Integer Nonlinear Programming. Springer, pp.
1–39.

Brakmo, L.S., Peterson, L.L., 1995. Tcp vegas: end to end congestion avoidance on a
global internet. IEEE J. Sel. Area. Commun. 13 (8), 1465–1480.

Cao, Y., Xu, M., Fu, X., 2012. Delay-based congestion control for multipath tcp. In:
Network Protocols (ICNP), 2012 20th IEEE International Conference on. IEEE, pp.
1–10.

Chattopadhyay, S., Shailendra, S., Nandi, S., Chakraborty, S., 2018. Improving mptcp
performance by enabling sub-flow selection over a sdn supported network. In: 2018
14th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob). IEEE, pp. 1–8.

Cordero, J.A., 2016. Multi-path tcp performance evaluation in dual-homed
(wired/wireless) devices. J. Netw. Comput. Appl. 70, 131–139.

Dinic, E.A., 1970. Algorithm for solution of a problem of maximum flow in networks
with power estimation. In: Soviet Math. Doklady, vol. 11, pp. 1277–1280.

Du, P., Nazari, S., Mena, J., Fan, R., Gerla, M., Gupta, R., 2016. Multipath tcp in
sdn-enabled leo satellite networks. In: Military Communications Conference,
MILCOM 2016-2016 IEEE. IEEE, pp. 354–359.

Edmonds, J., Karp, R.M., 1972. Theoretical improvements in algorithmic efficiency for
network flow problems. J. Assoc. Comput. Mach. 19 (2), 248–264.

Ford, L.R., Fulkerson, D.R., 1956. Maximal flow through a network. Can. J. Math. 8 (3),
399–404.

Ford, A., Raiciu, C., Handley, M., Bonaventure, O., 2013. Tcp Extensions for Multipath
Operation with Multiple Addresses. Tech. rep.. .

Goldberg, A.V., Tarjan, R.E., 1988. A new approach to the maximum-flow problem. J.
Assoc. Comput. Mach. 35 (4), 921–940.

Goldberg, A.V., Tarjan, R.E., 2014. Efficient maximum flow algorithms. Commun. ACM
57 (8), 82–89.

Han, H., Shakkottai, S., Hollot, C.V., Srikant, R., Towsley, D., 2006. Multi-path tcp: a
joint congestion control and routing scheme to exploit path diversity in the internet.
IEEE/ACM Trans. Netw. 14 (6), 1260–1271.

Hopps, C., 2000. Analysis of an Equal-Cost Multi-Path Algorithm. Tech. rep.. .
Hussein, A., Elhajj, I.H., Chehab, A., Kayssi, A., 2017. Sdn for mptcp: an enhanced

architecture for large data transfers in datacenters. In: 2017 IEEE International
Conference on Communications (ICC). IEEE, pp. 1–7.

Jiang, Z., Wu, Q., Li, H., Wu, J., 2018. scmptcp: sdn cooperated multipath transfer for
satellite network with load awareness. IEEE Access 6, 19823–19832.

Kelly, F.P., Maulloo, A.K., Tan, D.K., 1998. Rate control for communication networks:
shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49 (3),
237–252.

Khalili, R., Gast, N., Popovic, M., Le Boudec, J.-Y., 2013. Mptcp is not pareto-optimal:
performance issues and a possible solution. IEEE/ACM Trans. Netw. 21 (5),
1651–1665.

Kukreja, N., Maier, G., Alvizu, R., Pattavina, A., 2016. Sdn based automated testbed for
evaluating multipath tcp. In: Communications Workshops (ICC), 2016 IEEE
International Conference on. IEEE, pp. 718–723.

Lai, Y.-C., Ali, A., Hossain, M.S., Lin, Y.-D., 2019. Performance modeling and analysis of
tcp and udp flows over software defined networks. J. Netw. Comput. Appl. 130,
76–88.

Nam, H., Calin, D., Schulzrinne, H., 2016. Towards dynamic mptcp path control using
sdn. In: NetSoft Conference and Workshops (NetSoft), 2016 IEEE. IEEE, pp.
286–294.

Paasch, C., Detal, G., Duchene, F., Raiciu, C., Bonaventure, O., 2012. Exploring
mobile/wifi handover with multipath tcp. In: Proceedings of the 2012 ACM
SIGCOMM Workshop on Cellular Networks: Operations, Challenges, and Future
Design. ACM, pp. 31–36.

Pang, J., Xu, G., Fu, X., 2017. Sdn-based data center networking with collaboration of
multipath tcp and segment routing. IEEE Access 5, 9764–9773.

Peng, Q., Walid, A., Hwang, J., Low, S.H., 2016. Multipath tcp: analysis, design, and
implementation. IEEE/ACM Trans. Netw. 24 (1), 596–609.

Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A., Wischik, D., Handley, M., 2011.
Improving datacenter performance and robustness with multipath tcp. In: ACM
SIGCOMM Computer Communication Review, vol. 41. ACM, pp. 266–277.

Raiciu, C., Handley, M., Wischik, D., 2011. Coupled Congestion Control for Multipath
Transport Protocols. Tech. rep.. .

Ramaboli, A.L., Falowo, O.E., Chan, A.H., 2012. Bandwidth aggregation in
heterogeneous wireless networks: a survey of current approaches and issues. J.
Netw. Comput. Appl. 35 (6), 1674–1690.

Sandri, M., Silva, A., Rocha, L.A., Verdi, F.L., 2015. On the benefits of using multipath
tcp and openflow in shared bottlenecks. In: 2015 IEEE 29th International Conference
on Advanced Information Networking and Applications (AINA). IEEE, pp. 9–16.

Singh, K.V., Gupta, S., Verma, S., Pandey, M., 2019. Improving performance of tcp for
wireless network using sdn. In: Proceedings of the 20th International Conference on
Distributed Computing and Networking. ACM, pp. 267–276.

Sleator, D.D., Tarjan, R.E., 1983. A data structure for dynamic trees. J. Comput. Syst.
Sci. 26 (3), 362–391.

Sleator, D.D., Tarjan, R.E., 1985. Self-adjusting binary search trees. J. Assoc. Comput.
Mach. 32 (3), 652–686.

Tanaka, Y., Komine, T., Haruyama, S., Nakagawa, M., 2001. Indoor visible
communication utilizing plural white leds as lighting. In: Personal, Indoor and
Mobile Radio Communications, 2001 12th IEEE International Symposium on, vol. 2.
IEEE (FF).

Wischik, D., Handley, M., Braun, M.B., 2008. The resource pooling principle. Comput.
Commun. Rev. 38 (5), 47–52.

Wischik, D., Raiciu, C., Greenhalgh, A., Handley, M., 2011. Design, implementation and
evaluation of congestion control for multipath tcp. In: NSDI, vol. 11, 88.

Yedugundla, K., Ferlin, S., Dreibholz, T., Alay, ., Kuhn, N., Hurtig, P., Brunstrom, A.,
2016. Is multi-path transport suitable for latency sensitive traffic? Comput.
Network. 105, 1–21.

Zannettou, S., Sirivianos, M., Papadopoulos, F., 2016. Exploiting path diversity in
datacenters using mptcp-aware sdn. In: Computers and Communication (ISCC),
2016 IEEE Symposium on. IEEE, pp. 539–546.

Yanbing Liu received his B.S. degree from the Department of Electronic Engineering
and Information Science (EEIS), University of Science and Technology of China (USTC),
in 2017, and he is pursuing for his M.S. degree in USTC. His research interests include
network protocols and multipath communication.

Xiaowei Qin received the B.S. and Ph.D. degrees from the Department of Electrical Engi-
neering and Information Science, University of Science and Technology of China (USTC),
Hefei, China, in 2000 and 2008, respectively. Since 2014, he has been a member of staff
in Key Laboratory of Wireless-Optical Communications of Chinese Academy of Sciences
at USTC. His research interests include optimization theory, service modeling in future
heterogeneous networks, and big data in mobile communication networks.

Ting Zhu received the B.S. degree in electronic information from Huazhong University
of Science and Technology, Wuhan, China, in 2015. He is currently pursuing the Ph.D.
degree in electronic engineering and information science at University of Science and
Technology of China. His current research interests include multipath communication,
network protocols, and wireless network QoS.

Xiaohui Chen received the B.S. and M.S. degree in communication and information engi-
neering from University of Science and Technology of China (USTC), Hefei, China, in
1998 and in 2004, respectively. He is currently an associate professor at the Department
of Electronic Engineering and Information System, USTC. His current research interests
include wireless network QoS, mobile computing, MAC protocol, and traffic model.

Guo Wei received his B.S. degree in EE from University of Science and Technology of
China (USTC) in 1983, and M.S., Ph.D degrees in EE from Chinese academy of Science
in 1986 and 1991 respectively. He is currently a full professor at the Department of
Electronic Engineering and Information System, USTC. His current research interests are
wireless and mobile communications, wireless multimedia communications and mmwave
communication system.

85

http://refhub.elsevier.com/S1084-8045(19)30191-2/sref1
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref2
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref3
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref4
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref5
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref6
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref7
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref8
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref9
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref10
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref11
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref12
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref13
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref14
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref15
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref16
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref17
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref18
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref19
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref20
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref21
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref22
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref23
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref24
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref25
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref26
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref27
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref28
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref29
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref30
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref31
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref32
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref33
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref34
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref35
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref36
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref37
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref38
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref39
http://refhub.elsevier.com/S1084-8045(19)30191-2/sref40

	Improve MPTCP with SDN: From the perspective of resource pooling
	1. Introduction
	2. Motivation
	2.1. Background
	2.2. Evaluation of MPTCP performance
	2.3. Related works

	3. Design of S-MPTCP
	3.1. Resource exploration
	3.2. Resource allocation
	3.3. Flow control

	4. System architecture
	4.1. SDN controller
	4.2. MPTCP protocol stack

	5. Evaluation
	5.1. Resource allocation test
	5.2. Resource exploration test

	6. Conclusion and future work
	Declarations of interest
	Acknowledgment
	References

